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Pythagoras theorem, BC = 2 2  m. The forces

on the ladder are its weight W acting at its centre
of gravity D, reaction forces F

1 
and F

2 
of the wall

and the floor respectively. Force F
1
 is

perpendicular to the wall, since the wall is
frictionless. Force F

2
  is resolved into two

components, the normal reaction N and the
force of friction F. Note that F prevents the ladder
from sliding away from the wall and is therefore
directed toward the wall.

For translational equilibrium, taking the
forces in the vertical direction,

N – W = 0 (i)

Taking the forces in the horizontal direction,

F – F
1
 = 0 (ii)

For rotational equilibrium, taking the
moments of the forces about A,

12 2 F − (1/2) W = 0 (iii)

Now W = 20 g = 20 × 9.8 N = 196.0 N

From (i) N = 196.0 N

From (iii)
1 4 2 196.0/4 2 34.6 NF W= = =

From (ii) 1 34.6 NF F= =

               2 2
2 199.0F F N= + = N

The force F
2
 makes an angle α with the

horizontal,

1tan 4 2 , tan (4 2) 80N Fα α −= = = ≈ �    t

7.9  MOMENT OF INERTIA

We have already mentioned that we are

developing the study of rotational motion

parallel to the study of translational motion with

which we are familiar. We have yet to answer

one major question in this connection. What is

the analogue of mass in rotational motion?

We shall attempt to answer this question in the

present section. To keep the discussion simple,

we shall consider rotation about a fixed axis

only. Let us try to get an expression for the

kinetic energy of a rotating body. We know

that for a body rotating about a fixed axis, each

particle of the body moves in a circle with linear

velocity given by Eq. (7.19). (Refer to Fig. 7.16).

For a particle at a distance from the axis, the

linear velocity is i irυ ω= . The kinetic energy of

motion of this particle is

2 2 21 1

2 2
i i i i ik m m rυ ω= =

where m
i 
is the mass of the particle. The total

kinetic energy K of the body is then given by
the sum of the kinetic energies of individual
particles,

2 2

1 1

1
( )

2

n n

i i i

i i

K k m r ω
= =

= =∑ ∑

Here n is the number of particles in the body.
Note ω is the same for all particles. Hence, taking
ω out of the sum,

2 2

1

1
( )

2

n

i i

i

K m rω
=

= ∑

We define a new parameter characterising
the rigid body, called the moment of inertia I ,
given by

2

1

n

i i

i

I m r
=

=∑ (7.34)

With this definition,

21

2
K Iω= (7.35)

Note that the parameter I is independent of
the magnitude of the angular velocity. It is a
characteristic of the rigid body and the axis
about which it rotates.

Compare Eq. (7.35) for the kinetic energy of
a rotating body with the expression for the
kinetic energy of a body in linear (translational)
motion,

21

2
K m υ=

Here, m is the mass of the body and v is its
velocity. We have already noted the analogy
between angular velocity ω (in respect of rotational
motion about a fixed axis) and linear velocity v (in
respect of linear motion). It is then evident that
the parameter, moment of inertia I, is the desired
rotational analogue of mass in linear motion. In
rotation (about a fixed axis), the moment of inertia
plays a similar role as mass does in linear motion.

We now apply the definition Eq. (7.34), to
calculate the moment of inertia in two simple
cases.
(a) Consider a thin ring of radius R and mass

M, rotating in its own plane around its centre
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with angular velocity ω. Each mass element
of the ring is at a distance R from the axis,
and moves with a speed Rω.  The kinetic
energy is therefore,

2 2 21 1

2 2
K M MRυ ω= =

Comparing with Eq. (7.35) we get I = MR 2

for the ring.

Fig. 7.28 A light rod of length l with a pair of masses

rotating about an axis through the centre of

mass of the system and perpendicular to

the rod. The total mass of the system is M.

(b) Next, take a rigid rod of negligible mass of
length of length l with a pair of small masses,
rotating about an axis through the centre of
mass perpendicular to the rod (Fig. 7.28).
Each mass M/2 is at a distance l/2 from the
axis. The moment of inertia of the masses is
therefore given by

(M/2) (l/2)2 + (M/2)(l/2)2

Thus, for the pair of masses, rotating about
the axis through the centre of mass
perpendicular to the rod

I = Ml2 / 4
Table 7.1 simply gives the moment of inertia of
various familiar regular shaped bodies about
specific axes. (The derivations of these
expressions are beyond the scope of this textbook
and you will study them in higher classes.)

As the mass of a body resists a change in its
state of linear motion, it is a measure of its inertia
in linear motion. Similarly, as the moment of
inertia about a given axis of rotation resists a
change in its rotational motion, it can be
regarded as a measure of rotational inertia of
the body; it is a measure of the way in which
different parts of the body are distributed at
different distances from the axis. Unlike the
mass of a body, the moment of inertia is not a
fixed quantity but depends on distribution of
mass about the axis of rotation, and the
orientation and position of the axis of rotation

with respect to the body as a whole. As a

measure of the way in which the mass of a

rotating rigid body is distributed with respect to

the axis of rotation, we can define a new

parameter, the radius of gyration. It is related

to the moment of inertia and the total mass of

the body.

Notice from the Table 7.1 that in all

cases, we can write I = Mk2, where k has

the dimension of length. For a rod, about

the perpendicular axis at its midpoint,

i.e.
2 2 12,k L=  = 12k L . Similarly, k = R/2

for the circular disc about its diameter. The

length k is a geometric property of the body and

axis of rotation. It is called the radius of

gyration. The radius of gyration of a body

about an axis may be defined as the distance

from the axis of a mass point whose mass is

equal to the mass of the whole body and whose

moment of inertia is equal to the moment of

inertia of the body about the axis.

Thus, the moment of inertia of a rigid body

depends on the mass of the body, its shape and

size; distribution of mass about the axis of

rotation, and the position and orientation of the

axis of rotation.

From the definition, Eq. (7.34), we can infer

that the dimensions of moments of inertia are

ML2 and its SI units are kg m2.

The property of this extremely important

quantity I, as a measure of rotational inertia of

the body, has been put to a great practical use.

The machines, such as steam engine and the

automobile engine, etc., that produce rotational

motion have a disc with a large moment of

inertia, called a flywheel. Because of its large

moment of inertia, the flywheel resists the

sudden increase or decrease of the speed of the

vehicle. It allows a gradual change in the speed

and prevents jerky motions, thereby ensuring

a smooth ride for the passengers on the vehicle.

7.10 THEOREMS OF PERPENDICULAR AND
PARALLEL AXES

These are two useful theorems relating to
moment of inertia. We shall first discuss the
theorem of perpendicular axes and its simple
yet instructive application in working out the
moments of inertia of some regular-shaped
bodies.
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Table 7.1 Moments of inertia of some regular shaped bodies about specific axes

Z Body Axis Figure I

(1) Thin circular Perpendicular to M R 2

ring, radius R plane, at centre

(2) Thin circular Diameter M R2/2

ring, radius R

(3) Thin rod, Perpendicular to M L2/12

length  L rod, at mid point

(4) Circular disc, Perpendicular to M R2/2

radius R disc at centre

(5) Circular disc, Diameter M R2/4

radius R

(6) Hollow cylinder, Axis of cylinder M R2

radius R

(7) Solid cylinder, Axis of cylinder M R2/2

radius R

(8) Solid sphere, Diameter 2 M R2/5

radius R

Theorem of perpendicular axes

This theorem is applicable to bodies which are
planar. In practice this means the theorem

applies to flat bodies whose thickness is very

small compared to their other dimensions (e.g.

length, breadth or radius). Fig. 7.29 illustrates

the theorem. It states that the moment of
inertia of a planar body (lamina) about an axis
perpendicular to its plane is equal to the sum
of its moments of inertia about two
perpendicular axes concurrent with
perpendicular axis and lying in the plane of
the body.
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u

Fig. 7.29 Theorem of perpendicular axes

applicable to a planar body; x and y axes

are two perpendicular axes in the plane

and the z-axis is perpendicular to the

plane.

The figure shows a planar body. An axis
perpendicular to the body through a point O is
taken as the z-axis. Two mutually perpendicular
axes lying in the plane of the body and
concurrent with z-axis, i.e., passing through O,
are taken as the x and y-axes. The theorem
states that

z x yI I I= + (7.36)

Let us look at the usefulness of the theorem
through an example.

Example 7.10  What is the moment of
inertia of a disc about one of its diameters?

Fig. 7.30 Moment of inertia of a disc about a

diameter, given its moment of inertia about

the perpendicular axis through its centre.

Answer  We assume the moment of inertia of
the disc about an axis perpendicular to it and
through its centre to be known; it is MR2/2,
where M is the mass of the disc and R is its
radius (Table 7.1)

The disc can be considered to be a planar
body. Hence the theorem of perpendicular axes
is applicable to it. As shown in Fig. 7.30, we
take three concurrent axes through the centre
of the disc, O, as the x–, y– and z–axes; x– and
y–axes lie in the plane of the disc and z–axis is
perpendicular to it. By the theorem of
perpendicular axes,

z x yI I I= +

Now, x and y axes are along two diameters
of the disc, and by symmetry the moment of
inertia of the disc is the same about any
diameter. Hence

I
x 
=

 
I
y

and I
z
 = 2I

x

But I
z
 = MR2/2

So finally, I
x
 = I

z
/2 = MR2/4

Thus the moment of inertia of a disc about
any of its diameter is MR2/4 .   t

Find similarly the moment of inertia of a
ring about any of its diameters. Will the theorem
be applicable to a solid cylinder?

Fig.7.31 The theorem of parallel axes The z and z′
axes are two parallel axes separated  by a

distance a; O is the centre of mass of the

body, OO’ = a.
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7.10.1 Theorem of parallel axes

This theorem is applicable to a body of any
shape. It allows to find the moment of inertia of
a body about any axis, given the moment of
inertia of the body about a parallel axis through
the centre of mass of the body. We shall only
state this theorem and not give its proof. We
shall, however, apply it to a few simple situations
which will be enough to convince us about the
usefulness of the theorem. The theorem may
be stated as follows:

The moment of inertia of a body about any
axis is equal to the sum of the moment of
inertia of the body about a parallel axis passing
through its centre of mass and the product of
its mass and the square of the distance
between the two parallel axes. As shown in
the Fig. 7.31, z and z′ are two parallel axes,
separated by a distance a. The z-axis passes
through the centre of mass O of the rigid body.
Then according to the theorem of parallel axes

I
z′

 = I
z 
+ Ma2 (7.37)

where I
z
  and  I

z′ are the moments of inertia of the
body about the z and z′ axes respectively, M is the
total mass of the body and a is the perpendicular
distance between the two parallel axes.

Example 7.11  What is the moment of
inertia of a rod of mass M, length l about
an axis perpendicular to it through one
end?

Answer    For the rod of mass M and length l,
I = Ml2/12. Using the parallel axes theorem,
I′ = I + Ma2 with  a = l/2  we get,

22 2

12 2 3

l l Ml
I M M

 ′ = + = 
 

We can check this independently since I is
half the moment of inertia of a rod of mass 2M

and length 2l about its midpoint,

2 24 1
2 .

12 2 3

l Ml
I M′ = × = t

Example 7.12 What is the moment of
inertia of a ring about a tangent to the
circle of the ring?

Answer
The tangent to the ring in the plane of the ring
is parallel to one of the diameters of the ring.

The distance between these two parallel axes is
R, the radius of the ring. Using the parallel axes
theorem,

Fig. 7.32

I I MR
MR

MR MRdiatangent = + = + =2
2

2 2

2

3

2
.   t

7.11 KINEMATICS OF ROTATIONAL MOTION
ABOUT A FIXED AXIS

We have already indicated the analogy between
rotational motion and translational motion. For

example, the angular velocity ωωωωω plays the same
role in rotation as the linear velocity v in
translation. We wish to take this analogy

further. In doing so we shall restrict the
discussion only to rotation about fixed axis. This

case of motion involves only one degree of
freedom, i.e., needs only one independent
variable to describe the motion. This in

translation corresponds to linear motion. This
section is limited only to kinematics. We shall

turn to dynamics in later sections.

We recall that for specifying the angular
displacement of the rotating body we take any
particle like P (Fig.7.33) of the body. Its angular
displacement θ in the plane it moves is the
angular displacement of the whole body; θ is
measured from a fixed direction in the plane of

motion of P, which we take to be the x′-axis,

chosen parallel to the x-axis. Note, as shown,
the axis of rotation is the z – axis and the plane
of the motion of the particle is the x - y plane.
Fig. 7.33 also shows θ

0
, the angular

displacement at t = 0.

We also recall that the angular velocity is
the time rate of change of angular displacement,
ω = dθ/dt. Note since the axis of rotation is fixed,
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